CS 145 Discussion 3

Reminders

- HW2 will be released today (10/20/2017)
 - HW2 out, due 10/29/2017 11:59 pm (Sunday)
 - It would be easier and clearer than HW1.
- Data crawler for the course project
 - Start implementing the crawler as soon as possible
 - Need time to crawl sufficient data

Today's Outline

- Support Vector Machine
 - Recap
 - Example
- Neural Network
 - Backpropagation derivation
 - Exploding and vanishing gradients
- NN Examples
 - Binary classification
 - Multi-class classification
 - Multi-label classification

Support Vector Machine

Support Vector Machine Recap

Hyperplane separating the data points

$$\mathbf{w}^T\mathbf{x} + \mathbf{b} = 0$$

Maximize margin

$$\rho = \frac{2}{\|w\|}$$

Solution

$$\mathbf{w} = \sum_{k:\alpha_k \neq 0} (y_k - \mathbf{w}^T \mathbf{x}_k) / N_k$$

Margin Formula

Margin Lines

$$\mathbf{w}^T \mathbf{x}_a + \mathbf{b} = 1 \qquad \mathbf{w}^T \mathbf{x}_b + \mathbf{b} = -1$$

Distance between parallel lines

$$d=rac{|c_2-c_1|}{\sqrt{a^2+b^2}}$$

Margin

$$\rho = \frac{|(b+1) - (b-1)|}{||w||} = \frac{2}{||w||}$$

Linear SVM Example

Positively labeled data points (1 to 4)

$$\left\{ \left(\begin{array}{c} 3\\1 \end{array}\right), \left(\begin{array}{c} 3\\-1 \end{array}\right), \left(\begin{array}{c} 6\\1 \end{array}\right), \left(\begin{array}{c} 6\\-1 \end{array}\right) \right\}$$

Negatively labeled data points (5 to 8)

$$\left\{ \left(\begin{array}{c} 1\\0 \end{array}\right), \left(\begin{array}{c} 0\\1 \end{array}\right), \left(\begin{array}{c} 0\\-1 \end{array}\right), \left(\begin{array}{c} -1\\0 \end{array}\right) \right\}$$

- Alpha values
 - $\alpha_1 = 0.75$
 - $\alpha_2 = 0.75$
 - $\alpha_5 = 3.5$
 - Others = 0

Linear SVM Example

- Which points are support vectors?
- Calculate normal vector of hyperplane: w
- Calculate the bias term
- What is the decision boundary?
- Predict class of new point (4, 1)

Figure 2: The three support vectors are marked as yellow circles.

Plot

Non-linear SVM Example

Positively labeled data points (1 to 4)

$$\left\{ \left(\begin{array}{c} 2\\2 \end{array}\right), \left(\begin{array}{c} 2\\-2 \end{array}\right), \left(\begin{array}{c} -2\\-2 \end{array}\right), \left(\begin{array}{c} -2\\2 \end{array}\right) \right\}$$

Negatively labeled data points (5 to 8)

$$\left\{ \left(\begin{array}{c} 1\\1 \end{array}\right), \left(\begin{array}{c} 1\\-1 \end{array}\right), \left(\begin{array}{c} -1\\-1 \end{array}\right), \left(\begin{array}{c} -1\\1 \end{array}\right) \right\}$$

Non-linear mapping

$$\Phi_1 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{cases}
\begin{pmatrix} 4 - x_2 \\ 4 - x_1 \\ x_1 \\ x_2 \end{pmatrix} & \text{if } \sqrt{x_1^2 + x_2^2} > 2 \\
& \text{otherwise}
\end{cases}$$

Non-linear SVM Example

New positively labeled data points (1 to 4)

$$\left\{ \left(\begin{array}{c} 2\\2 \end{array}\right), \left(\begin{array}{c} 6\\2 \end{array}\right), \left(\begin{array}{c} 6\\6 \end{array}\right), \left(\begin{array}{c} 2\\6 \end{array}\right) \right\}$$

New negatively labeled data points (5 to 8)

$$\left\{ \left(\begin{array}{c} 1\\1 \end{array}\right), \left(\begin{array}{c} 1\\-1 \end{array}\right), \left(\begin{array}{c} -1\\-1 \end{array}\right), \left(\begin{array}{c} -1\\1 \end{array}\right) \right\}$$

- Alpha values
 - $\alpha_1 = 4$
 - $\alpha_5 = 7$
 - Others = 0

Non-linear SVM Example

- Which points are support vectors?
- Calculate normal vector of hyperplane: w
- Calculate the bias term
- What is the decision boundary?
- Predict class of new point (4, 5)

Plot

Backpropagation in Neural Network

Backpropagation Derivation

Equations

Backpropagate the error (by updating weights and biases)

- For unit j in output layer: $Err_j = O_j(1-O_j)(T_j-O_j)$
- For unit j in a hidden layer: $Err_j = O_j(1 O_j)\sum_k Err_k w_{jk}$
- Update weights: $w_{ij} = w_{ij} + \eta Err_j O_i$
- Update bias: $\theta_i = \theta_i + \eta Err_i$
- Derivation (pdf also uploaded on CCLE)
 - https://www.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf

Exploding and vanishing gradients in Neural Network

Vanishing Gradient Problem

- Deep neural networks use backpropagation a lot.
- Backpropagation applies chain rule
- The chain rule multiplies derivatives.
- Often these derivatives between 0 and 1.
- As the chain gets longer, products get smaller until they disappear.

$$\frac{dJ}{d\theta(l)} = \frac{dJ}{da(L)} \cdot \frac{da(L)}{dz(L)} \cdot \frac{dz(L)}{da(L-1)} \cdot \frac{da(L-1)}{dz(L-1)} \cdots \frac{da(l+1)}{dz(l+1)} \cdot \frac{dz(l+1)}{d\theta(l)}$$

Vanishing Gradient Problem (Cont'd)

Solution: Other Activation Function

- RELU(Rectified Linear Unite)
- $f_{ReLU}(x) = \max(0, x)$

- Does not vanish as x increases
- Faster without computing exponential functions

Exploding Gradient Problem

- With gradients larger than 1, products may become larger and larger as the chain becomes longer and longer
- Causing overlarge updates to parameters

Solution:

- Gradient clipping (limiting the gradients)
- Reduce learning rate
- Add regularization as constraints on weights

Solve Classification Problems with Neural Networks

Classification Tasks

- Binary classification
 - Single output with two possible values
 - E.g., Yes or No, Rain or Not
- Multi-class classification
 - Single outputs with multiple possible values
 - E.g., Rain/Sunny/Cloudy
- Multi-label classification
 - Multiple outputs, each of them is a binary
 - E.g., genres prediction

The Final Layer of Neural Network

Binary Classification

Estimate the probability of belonging a certain class

$$P(Y = 0 \mid X, W)$$

- Sigmoid function
 - Logistic $\frac{1}{1+e^{-x}} = \frac{e^x}{1+e^x}$
 - Hyperbolic tangent (tanh) $\frac{e^{2x}-1}{e^{2x}+1}$

Sigmoid Functions

Hyperbolic tangent (tanh)

Binary Classification (Cont'd)

Multi-class Classification

- Predict the probabilistic distribution of classes
- Softmax Function or Normalized Exponential Function
 - Generate a score based on the exponential function for each class
 - Normalize scores as the probabilistic distribution

$$P(y = j \mid x) = \frac{e^{x^T w_j}}{\sum_k e^{x^T w_k}}$$

An example of image classification

Multi-label Classification

- Output independent probabilities
 - K sigmoid outputs
- Share weights for different binary prediction

